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Abstract
Kwork Sau Fa (1998 J. Phys. A: Math. Gen. 31 8159) has shown an inequality
‘S(AB) � S(A) + S(B) + (1 − q)S(A)S(B)’ for two interacting systems A

and B. A typical example of S(A) is the Tsallis entropy as stated in his paper.
However, there exist many counterexamples to the above inequality. The reason
leading to the incorrect result is also presented.

PACS number: 89.70.+c

In [1], the following inequality is proved for two interacting systems A and B,

S(AB) � S(A) + S(B) + (1 − q)S(A)S(B) (1)

where S(A) is the generalized Tsallis entropy derived in [1]. A typical example of S(A) is the
Tsallis entropy defined by

ST
q = k

1 − ∑
i p

q

i

q − 1
(2)

as stated in (2.19) and the conclusion in [1]. In this comment, we consider the inequality (1)
in case S = ST

q .
This short report shows that the inequality (1) does not hold in general. In fact, there

exist many counterexamples to the inequality (1). The simplest counterexample is shown as
follows.

Let A,B be two random variables taking two values 0 and 1. Then, consider the following
simple joint distribution:

p(A = 0, B = 0) = p(1 − x) p(A = 0, B = 1) = (1 − p)y (3)

p(A = 1, B = 0) = px p(A = 1, B = 1) = (1 − p)(1 − y) (4)

where

0 � p, x, y � 1. (5)

Obviously the probability p(A,B) ((3) and (4)) satisfies the conditions of joint distribution.
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Figure 1. Graph showing each side of the inequality (1). (—: left-hand side of (1), – – –:
right-hand side of (1)).

For the above joint distribution p(A,B) given by (3) and (4), we can compute the marginal
distribution as follows:

p(A = 0) = p(1 − x) + (1 − p)y p(A = 1) = px + (1 − p)(1 − y) (6)

p(B = 0) = p(1 − x) + px = p p(B = 1) = 1 − p. (7)

Clearly, there exist many p, x, y ∈ [0, 1] such that

p(A,B) �= p(A)p(B) (8)

⇔ p(A = i, B = j) �= p(A = i)p(B = j) (i, j ∈ {0, 1}). (9)

This means that the two systems A and B interact with each other. Paper [1] states that under
the condition (8) the inequality (1) holds.

Let the left- and right-hand sides of (1) be LT
q (A,B) and RT

q (A,B), respectively.

LT
q (A,B) ≡ ST

q (AB) (10)

RT
q (A,B) ≡ ST

q (A) + ST
q (B) + (1 − q)ST

q (A)ST
q (B) (11)

where we consider the case S = ST
q in the inequality (1) as stated before.

When x = 0.1, y = 0.7 and q = 2.1, LT
q (A,B) and RT

q (A,B) can be plotted as a
function of the probability p in one graph (figure 1). The solid line and dashed line in the
graph shown in figure 1 represent LT

q (A,B) and RT
q (A,B), respectively. This example shows

that the inequality (1) proved in [1] does not hold in general.

ST
q (AB) � ST

q (A) + ST
q (B) + (1 − q)ST

q (A)ST
q (B). (12)

There exist such many counterexamples to the inequality (1). The reason leading
to this incorrect result is his following statement after (3.3) in [1]: ‘gj is as the total
probability

∑
i p

q

i gij of finding the event Bj in system B’. gj is not a probability because∑
j gj = ∑

j

∑
i p

q

i gij �= 1 for any q ∈ R+.
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